Fine structure of matrix Darboux-Toda integrable mapping

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toda-Darboux maps and vertex operators

(1 + cX(t, z))τ Department of Mathematics, Brandeis University, Waltham, Mass 02254, USA. The support of a National Science Foundation grant # DMS-9503246 is gratefully acknowledged. Université de Louvain, 1348 Louvain-la-Neuve, Belgium and Department of Mathematics, Brandeis University, Waltham, Mass 02254, USA. The support of a National Science Foundation grant # DMS-9503246, a Nato, a FNRS a...

متن کامل

Darboux Transformations for SUSY Integrable Systems

Several types of Darboux transformations for supersymmetric integrable systems such as the Manin-Radul KdV, Mathieu KdV and SUSY sine-Gordon equations are considered. We also present solutions such as supersolitons and superkinks. ⋆ On leave of absence from Beijing Graduate School, CUMT, Beijing 100083, China ⋆⋆ Supported by Beca para estancias temporales de doctores y tecnólogos extranjeros en...

متن کامل

Darboux-integrable equations with non-Abelian nonlinearities

We introduce a new class of nonlinear equations admitting a representation in terms of Darboux-covariant compatibility conditions. Their special cases are, in particular, (i) the “general” von Neumann equation iρ̇ = [H, f(ρ)], with [f(ρ), ρ] = 0, (ii) its generalization involving certain functions f(ρ) which are non-Abelian in the sense that [f(ρ), ρ] 6= 0, and (iii) the Nahm equations.

متن کامل

Toda Lattice Realization of Integrable Hierarchies

We present a new realization of scalar integrable hierarchies in terms of the Toda lattice hierarchy. In other words, we show on a large number of examples that an integrable hierarchy, defined by a pseudodifferential Lax operator, can be embedded in the Toda lattice hierarchy. Such a realization in terms the Toda lattice hierarchy seems to be as general as the Drinfeld–Sokolov realization.

متن کامل

Structure of Matrix Elements in Quantum Toda Chain

We consider the quantum Toda chain using the method of separation of variables. We show that the matrix elements of operators in the model are written in terms of finite number of “deformed Abelian integrals”. The properties of these integrals are discussed. We explain that these properties are necessary in order to provide the correct number of independent operators. The comparison with the cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 1998

ISSN: 0375-9601

DOI: 10.1016/s0375-9601(98)00135-2